
1

Smoldyn
A Spatial Stochastic Simulator

Version 1.72, © February 2007

Steven Andrews

Part I: User manual 1
1. Overview of Smoldyn 3
2. The Configuration File 3

2.1 Starting Smoldyn 3
2.2 Configuration file format 4
2.3 Configuration file statements 5
2.4 Runtime commands 15
2.5 Sample configuration file 19

3. Graphics 20
3.1 Graphics manipulations 20
3.2 Saving images and movies 21

4. Algorithm details 21
4.1 Binding and unbinding radii 21
4.2 Time steps 24
4.3 Reactions near surfaces 26
4.4 Absorbing surfaces 27

5. Tests of Smoldyn 28
5.1 Initial test: bounce 28
5.2 Diffusion rates: diff 28
5.3 Zeroth order reaction rates: zeroreact 29
5.4 Unimolecular reaction rates: unireact 30
5.5 Bimolecular reactions, different reactants: reactAB 31
5.6 Bimolecular reactions, same reactant: reactAA 31
5.7 Reactions near walls: reactW 31
5.8 Reversible reactions: equil 32
5.9 Simple reaction networks: lotvolt 32
5.10 Surfaces: surf1, surf2, surf3 33

6. Copyright and Citation 33
7. Acknowledgements 33

Part II: Smoldyn Code documentation 34
1. Compiling Smoldyn 34
2. Include files, macros, variables, etc. 34

2.1 Include files 34
2.2 Constants and global variables 36

2

2.3 Macros 37
2.4 Local variables 37

3. Structures, allocation, and freeing routines – smollib 39
3.1 Molecules 40
3.2 Walls 44
3.3 Reactions 45
3.4 Surfaces 50
3.5 Boxes 56
3.6 Simulation structure 60

4. Functions in smollib2.c (command interpreter routines) 62
4.1 Externally accessible function 63
4.2 Individual command functions 63
4.3 How to add a new runtime command 67

5. Functions in smoldyn.c (simulation control and graphics) 68
5.1 Non-OpenGL functions 68
5.2 Functions that require OpenGL 69

6. Smoldyn modifications 70
6.1 Modifications for version 1.5 (released 7/03) 70
6.2 Modifications for version 1.51 (released 9/5/03) 71
6.3 Modifications for version 1.52 (released 10/24/03) 71
6.4 Modifications for version 1.53 (released 2/9/04) 72
6.5 Modifications for version 1.54 (released 3/3/04) 73
6.6 Modifications for version 1.55 (released 8/20/04) 73
6.7 Modifications for version 1.56 (released 1/14/05) 73
6.8 Modifications for version 1.57 (released 2/17/05) 73
6.9 Modifications for version 1.58 (released 7/22/05) 73
6.10 Modifications for version 1.59 (released 8/26/05) 74
6.11 Modifications for version 1.60 (not released) 74
6.12 Modifications for version 1.70 (released 5/17/06) 74
6.13 Modifications for version 1.71 (released 12/8/06) 74
6.14 Modifications for version 1.72 (released 2/26/07) 74

7. The wish/ to do list 75
7.1 Bugs to fix 75
7.2 Desired features 75

3

1. Overview of Smoldyn

Smoldyn is a computer program which simulates the dynamics of reaction-diffusion
systems on a microscopic scale. While the code has been written to be platform
independent, most recent development has been done on a Macintosh, running OS 10.4.8.
It has also been compiled on Linux and Windows systems. OpenGL support (which is
standard with most modern operating systems) is required for graphical output.

Molecules in the simulation are represented individually, diffuse within a
rectanguloid volume by Brownian motion, and undergo simple chemical reactions. The
timescale considered is short enough that diffusion within the simulation volume is
explicitly modeled using exact molecular positions, but is long enough that momenta and
molecular orientations can be assumed to take on average values. This is often called the
Smoluchowski level of approximation (and hence the name of the program). A further
approximation is that molecules do not occupy volume. Time steps are synchronous,
alternating steps in which molecules diffuse and those in which they react. Space is
defined as an arbitrary dimensional rectanguloid volume which has fixed walls. The
walls can be reflective, absorbing, or periodic. Chemical reactions may be zeroth order,
unimolecular, or bimolecular, and may have any number of products. It is now possible
to include surfaces that can be composed from several standard shapes, where these
surfaces can be reflecting, absorbing, or transparent. The algorithms for Smoldyn are
described in a research paper written by Dennis Bray and myself titled “Stochastic
simulation of chemical reactions with spatial resolution and single molecule detail”
(Phys. Biol., 1:137-151, 2004).

2. The Configuration File

2.1 Starting Smoldyn

Before running Smoldyn, the parameters for a simulation need to be written in a text
format configuration file and saved to disk. Some sample configuration files should have
been included with the executable program, one of which is presented in section 2.5 of
this documentation. When Smoldyn is run, the program asks for the name of the
configuration file and for a few additional parameters; then it loads the file, runs the
simulation, and terminates. The only user input that is processed during the simulation is
for simple graphics manipulation and simulation pausing.

The name of the configuration file is typically given to Smoldyn after the program is
running, when it asks for the name of a configuration file. At the text prompt, type in the
configuration file name, including file path information. Spaces are allowed in the file
name or file path. Here are some examples, using a configuration file called config and
Macintosh file path notation:

config is in same directory as Smoldyn: config
config is in a subdirectory of where Smoldyn is: :folder:config
Absolute path name, starting from the volume: Mac HD:files:folder:config

4

It should also be possible to have a relative file path that ascends the file tree, as well as
descending the tree, although I have not figured out how to do this with the Macintosh
file system yet. Standard file path notation should also work with PCs or with Linux, but
have not been tested.

After the configuration file name is entered, Smoldyn asks for runtime flags, where
options are the characters ‘q’, ‘p’, ‘-’, or a combination of characters. ‘q’ is used for quiet
operation, in which no diagnostics or parameters are displayed, and is minimally useful.
‘p’ indicates that the simulation should be set up and that all diagnostics and parameters
should be calculated and displayed, but then the actual simulation should not be run.
This is useful for choosing appropriate parameters for complex simulations. A ‘-’ is used
to indicate that neither the ‘q’ nor ‘p’ options are desired.

It should also be possible to run Smoldyn from a Unix style command line, in which
case the name of the configuration file and the runtime flags can be entered on the same
command line, thus removing the need for text entry during program execution. In this
case, the order of the file name and the flags is unimportant and any runtime flags need to
be preceded by a ‘–’. I have not figured out how to do this yet using the Macintosh
system.

With the exception of graphics, which cannot be saved, all output from Smoldyn is
saved to text files, allowing their analysis with a wide variety of other software. These
output file names are declared in the configuration file, as explained below. These output
files can be saved in the same file folder as the configuration file, or in a sub-directory of
that folder.

2.2 Configuration file format

The design of a simulation can be broken down into two portions. One portion
includes the parameters of the physical system, including its shape, the molecules that are
present, the reactions that take place, and any surfaces. These parameters are entered in
the configuration file using a variety of statements and are simulated using the core
program. Here are some examples of statements:

dim 3 3 dimensional system
high_wall 0 100 r properties of a system boundary
time_start 0 starting time for the simulation
mol 10 CheY 50 50 50 creation of 10 CheY molecules

The other portion of a simulation is the action of the experimenter, which includes
measurements of the system and external perturbations to the system. These actions are
listed, also in the configuration file, with a series of commands with execution times; they
are not considered by Smoldyn until they are supposed to happen. When a command is
supposed to be executed, Smoldyn processes it with a runtime command interpreter,
which is an auxiliary portion of the program that is designed to be easily modified. Here
are some examples of commands:

cmd e ifno asp stop conditional command, run at every iteration

5

cmd @ 20 molcount outfile molecules are counted and recorded at time 20

Simulation parameters need to be entered using the formats shown in the table
given below. Formatting errors should be caught by Smoldyn, causing a program
termination and, hopefully, a useful error message. On each line of input, Smoldyn reads
a word that tells what the line contains and then reads the number of items that it expects.
Both too few items and too many items cause errors, although it is always possible to add
comments to the end of a line using a number sign. In many cases, lines may entered in
any order, although some basic definitions need to be entered near the top of the file.
Default values are used for parameters that are not defined in the configuration file.
While many instructions can only be entered once, such as the system dimensionality,
others can be entered multiple times, such as lines to define various collections of
molecules.

Reactions are entered as a block of definitions, beginning with the word
“start_reaction” and ending with “end_reaction”, between which only instructions that
are relevent to reactions are allowed. Reactions are stored internally with two
fundamental parts: a reactant table and a list of reactions, including both rates and
products. The reactant table associates reactants with numbered reactions but does not
give further details about them; in effect it is only the set of species on the left side of the
arrows in a list of reactions. The reaction list includes rate constants and lists of
products; in effect it is the set of species on the right side of the arrows. This structure is
used in the reaction section of the input file as well. A confusing aspect of reactions is
that reversible reactions (and some so-called continuation reactions) require a parameter
from which Smoldyn can figure out where to place multiple reaction products to prevent
immediate recombination. This issue is explained in section 3 of this documentation.

Surfaces are also entered with blocks of definitions. A surface may be made of up
many panels. In many cases, these panel will be adjacent, such as for a triangulated mesh
surface, the sides of a box, or a bacterium that is composed of a cylinder plus
hemispherical endcaps. However, the panels can also be non-contiguous. Each surface
has a uniform drawing color and method, and also interacts with molecules the same way
on each panel. These interactions can be transparent, reflective, or absorbing, which can
be set the same for all molecules, or can be different for different molecules. Currently,
there is no support for either surface-bound molecules, nor for “leaky” surfaces, but both
of these are being considered for future additions.

Since Smoldyn does not use any particular set of units, it is up to the user to make
sure units are consistent. Some useful conversion factors are:

10–6 cm2s–1 = 10–10 m2s–1 = 100 µm2s–2 = 0.1 µm2ms–1 = 100 nm2µs–1 = 0.1 nm2ns–1

1 M–1s–1 = 10–3 m3mol–1s–1 = 1.66e–27 m3s–1 = 1.66e–18 µm3ms–1 = 1.66e–9 nm3ns–1

2.3 Configuration file statements

Statements about the configuration file

text

6

Single-line comment. A ‘#’ symbol indicates that the rest of the line is a
comment.

/*
text
*/

Multi-line comment. All lines between “/*” and the following “*/” are
ignored. These must be the first “words” on a line. Additional text on
these lines is ignored as well.

read_file filename
Read some other configuration file, returning to the present one when that
one has been read.

end_file
End of configuration file. This line is optional, as Smoldyn can also just
read until the file ends.

Definition of system parameters

dim dim
Dimensionality of the system. Must be at least one, and is typically
between 1 and 3. Larger numbers are permitted as well.

max_names int
Maximum number of molecular species that will be used. It is
permissable to use this command and one or more “name” commands, or
“names” but not both.

name name
Name of a molecule. Standard naming conventions are followed, in that
the name should start with a letter and spaces are not permitted. This
command must be used in combination with “max_names”.

names name1 name2 … namen
Names of all of the types of molecules present in the system. Standard
naming conventions are followed, in that the name should start with a
letter and spaces are not permitted. The command “max_names” cannot be
used if this is used.

difc name float
Isotropic diffusion constant of molecule type name. Default value is 0.

difm name float0 float1 … floatdim*dim–1
Square root of diffusion matrix of name (the dot product of this matrix and
itself is the anisotropic diffusion matrix). The matrix has dim2 terms (dim
is the system dimensionality), listed row by row of the matrix; the matrix

7

is supposed to be symmetric. If this line is not entered, isotropic diffusion
is assumed, which leads to a faster runtime. While a matrix is used for
diffusion if one is given, the value stored with difc is used for reaction
rate calculations. If difc is not entered, the trace of the square of this
matrix, divided by the system dimensionality, is used as a proxy for the
isotropic diffusion coefficient to allow reaction rates to be estimated. This
line is most useful for restricting diffusion to a plane or a line, in which
case the square root of the diffusion coefficient is given for each diagonal
element of the matrix where there is diffusion and 0s are place on diagonal
elements for axes where diffusion is not possible, as well as on off-
diagonal elements.

low_wall dim pos type
Creates a lower boundary for the simulation volume. This wall is
perpendicular to the dimension dim such that all locations between pos
and the position of the corresponding upper boundary are considered to be
within the simulation volume. The type of wall is given in type, which
should be one of four single letter codes: ‘r’ means a reflecting wall, ‘p’
means a periodic wall (also called wrap-around or toroidal), ‘a’ means an
absorbing wall, and ‘t’ means a transparent wall. Transparent walls imply
an unbounded system and may lead to slow simulations. If any surfaces
are defined for the simulation, then walls still must be entered to define the
system volume, but these walls are essentially non-functional (the sole
exception is that reactions can occur across periodic walls). Additional
surfaces need to be defined to serve as the system boundaries.

high_wall dim pos type
Identical to the definition for low_wall, although this creates the upper
boundary for the simulation volume. See note about surfaces in low_wall.

max_mol int
Maximum possible number of molecules for which memory should be
allocated. The simulation terminates if more molecules are required than
are allocated initially. Note that most reactions require a few extra
molecule spaces for processing.

mol nmol name pos0 pos1 … posdim–1
Simulation starts with nmol type name molecules at location pos. Each of
the dim elements of the position may be a number to give the actual
position of the molecule or molecules; or the letter ‘u’ to indicate that the
position for each molecule should be a random value between the
bounding walls, chosen from a uniform density; or a position range which
is given as two numbers separated with a hyphen.

Simulation performance statements

8

rand_seed int
Seed for random number generator. If this line is not entered, the current
time is used as a seed, producing different sequences for each run.

accuracy float
A parameter that determines the quantitative accuracy of the simulation,
on a scale from 0 to 10. Low values are less accurate but run faster.
Default value is 10, for maximum accuracy. When accuracy is 0,
bimolecular reactions are only checked for pairs of reactants that are both
within the same virtual box; with higher accuracy values, reactants in
nearest neighboring boxes are considered as well, and then when accuracy
is 10, reactants in all types of neighboring boxes are checked.

molperbox float
Virtual boxes are set up initially so the average number of molecules per
box is no more than this value. The default value is 5. boxsize is an
alternate way of entering comparable information.

boxsize float
Rather than using molperbox to specify the sizes of the virtual boxes,
boxsize can be used to request the width of the boxes. The actual box
volumes will be no larger than the volume calculated from the width given
here.

Graphical display statements

graphics str
Type of graphics to use during the simulation. The options are ‘none’ for
no graphics, ‘opengl’ for basic and fast OpenGL graphics, ‘opengl_good’
for high quality and slow OpenGL graphics. If this line is not entered, no
graphics are shown.

graphic_iter int
Number of time steps that should be run between each update of the
graphics. Default value is 1.

tiff_iter int
Number of time steps that should be run between each automatic saving of
a TIFF file. Default value is 0, meaning that TIFFs should not be saved
automatically.

tiff_name name
Root filename for TIFF files, which may include path information if
desired. Default is “OpenGL”, which leads to the first TIFF being saved as
“OpenGL001.tif”.

9

tiff_min int
Initial suffix number of TIFF files that are saved. Default value is 1.

tiff_max int
Largest possible suffix number of TIFF files that are saved. Once this
value has been reached, additional TIFFs cannot be saved. Default value
is 999.

frame_thickness int
Thickness of the frame that is drawn around the simulation volume, in
points. Default value is 2.

grid_thickness int
Thickness of the grid lines that can be drawn to show the virtual boxes.
Default value is 0, so that the grid is not drawn.

background_color red green blue
background_color red green blue alpha

Color of the background. All values should be between 0 and 1 (use all 0s
for black and all 1s for white (default). The alpha value is optional and
may not work anyhow.

display_size name float
Size of molecule of type name for display to the graphical output. The
default value is 3, indicating that each molecule is displayed with a small
square; 0 indicates that a molecule should not be displayed and larger
numbers yield larger squares.

color name red green blue
Red, green, and blue values for displaying molecules of type name. Each
value should be between 0 and 1. Default values are 0 for each parameter,
which is black. Some useful colors: black is 0 0 0, brown is 0.6 0.6 0, red
is 1 0 0, orange is 1 0.7 0, yellow is 0.8 0.9 0, green is 0 1 0, blue is 0 0 1,
violet is 0.6 0 0.6, grey is 0.4 0.4 0.4, white is 1 1 1, and blue-green is 0
0.6 0.5.

Simulation time statements

time_start float
Starting point for simulated time.

time_stop float
Stopping time of simulation, using simulated time. The simulation
continues past the time_stop value by less than one time step.

time_step float

10

Time step for the simulation. Longer values lead to a faster runtime, while
shorter values lead to higher accuracy. Also, longer values lead to
bimolecular reactions that behave more as though they are activation
limited, rather then diffusion limited.

time_now float
Another starting time of simulation. Default value is equal to time_start.
If this time is before time_start, the simulation starts at time_start;
otherwise, it starts at time_now.

Statements about the runtime command interpreter

output_root str
Root of path where text output should be saved. Spaces are permitted.
Output files are saved in the same folder as the configuration file,
modified by this string. See the description for output_files. Make sure
that the destination folder has been created and that the string is terminated
with a colon (and started with a colon if needed).

output_files str1 str2 … strn
Declaration of filenames that can be used for output of simulation results.
Spaces are not permitted in these names. Any previous files with these
names will be overwritten. The path for these filenames starts from the
configuration file and may be modified by a root given with output_root.
For example, if the configuration file was called with :folder:config.txt
and output_root was not used, then the output file out.txt will appear in
the folder folder too. If the configuration file was called with
:folder:config.txt and the output root was given as results:, then the
output file goes to the results sub-folder of the folder folder. The
filename “stdout” results in output being sent to the standard output. In
most cases, it is also permissible to not declare filenames, in which case
output is again sent to the standard output.

output_file_number int
Starting number of output file name. The default is 0, meaning that no
number is appended to a name (e.g. the file name out.txt is saved as
out.txt). A value larger than 0 leads to an appended file name (if 1 is
used, then out.txt is actually saved as out_001.txt). Note that the
command incrementfile increments the file number before it runs the rest
of the command.

cmd b,a,e string
cmd @ time string
cmd n int string
cmd i on off dt string

Declaration of a command to be run by the run-time interpreter, where the
final portion labeled string is the actual command. The character

11

following cmd is the command type, which may be ‘b’ for before the
simulation, ‘a’ for after the simulation, ‘e’ for every time step during the
simulation, ‘@’ for a single command execution at time time, ‘n’ for every
n’th iteration of the simulation, or ‘i’ for a fixed time interval. For type
‘i’, the command is executed over the period from on to off with intervals
of at least dt (the actual intervals will only end at the times of simulation
time steps). See section 2.4 for the commands that are available.

max_cmd int (obsolete statement)
Maximum length of command queue. Default value is 10. As of version
1.55, this statement is no longer needed in configuration files, because the
command queue is now expanded as needed.

Reaction definitions

start_reaction
Start of reaction definition. Between this instruction and “end_reaction”,
all lines need to pertain to this order of reaction. It is permissible to list
reactions of the same order in multiple blocks, provided that only the first
block includes a max_rxn statement and that sufficient reactions are
declared with that statement.

order int
Order of the reactions being declared (0, 1, or 2).

max_rxn max_rxn
Maximum number of reactions that will be declared of the given order.

reactant r0 r1 … rnrxn–1
reactant name r0 r1 … rnrxn–1
reactant name1 + name2 r0 r1 … rnrxn–1

Declaration of reactants and reaction names for zeroth order,
unimolecular, and bimolecular reactions, respectively. The listed
molecule names are the reactants and the following strings are the
respective reaction names. Note that there are spaces before and after the
‘+’ symbol.

rate r rate
Reaction rate constant for reaction called r. Units for the reaction rate
constant are (volume)order–1 times inverse time. These rates are converted
by the program into probabilities or binding radii. To enter the simulation
parameters directly, use rate_internal.

rate_internal r float
Internal value for reaction rate information, which can be used to override
the internal rates that are calculated from the rate entry. For zeroth order
reactions, this is the expectation total number of reactions per time step;

12

for unimolecular reactions, this is the reaction probability per time step for
each reactant molecule; and for bimolecular reactions, this is the binding
radius.

product r name + name + … + name
List of products for reaction r. Note that there are spaces before and after
each ‘+’ symbol.

product_param r i
product_param r p,x,r,b,q,y,s float
product_param r o,f prod_name pos0 pos1… posdim–1

Parameters for the initial placement of products of reaction r. A product
parameter also affects the binding radius of the reverse reaction. These
are explained in section 3. In the first format, a type of ‘i’ indicates that
the reverse reaction is ignored for calculations. The second format uses
one of the type letters shown: ‘p’ and ‘q’ are geminate rebinding
probabilities, ‘x’ and ‘y’ are maximum geminate rebinding probabilities,
‘r’ and ‘s’ are ratios of unbinding to binding radii, and ‘b’ is a fixed
unbinding radius. The third format yields products that have a fixed
relative orientation, which is either randomly rotated with ‘o’, or not
rotated with ‘f’. In the absence of better information, a useful default
parameter type is either ‘x’ or ‘y’, with a value of about 0.2.

end_reaction
End of reaction definition. Reaction instructions are no longer recognized
but other simulation instructions are.

Surface definitions

max_surface int
Maximum number of surfaces that will be defined. Each surface may
have many panels, including disjoint panels.

start_surface
Start of surface definition block. Between this instruction and
“end_surface”, all lines need to pertain to this surface. It is permissible to
list parameters of one surface in multiple blocks.

name name
Name of this surface. If the name has not been used yet for a surface, then
a new surface is started. All lines within this surface block pertain to this
surface.

action_front molec action
The behavior of molecules named molec when they collide with the front
of this surface. If molec is “all”, then this action applies to all molecules.
The action is a single letter, which is ‘r’ for reflection, ‘a’ for absorption,

13

‘t’ for transparent, or ‘p’ for periodic. The default is reflection for all
molecules. Periodic surfaces only work for rectangle panels and are only
intended to be used for periodic boundaries of the system volume.

action_back molec action
The behavior of molecules named molec when they collide with the back
of this surface. See action_front for details.

action_both molec action
The behavior of molecules named molec when they collide with either the
front or back of this surface. See action_front for details.

color_front red green blue
color_front red green blue alpha

Color of the front of the surface. All color values are numbers between 0
and 1, where 1 is maximum intensity a 0 is minimum (1 1 1 is white). The
alpha value is optional and describes the opacity of the surface. If
entered, it also needs to be between 0 and 1, where 1 is an opaque object
(the default) and 0 is transparent. OpenGL graphics do not work well with
non-zero alpha values, so don’t expect good results.

color_back red green blue
color_back red green blue alpha

Color of the back of the surface. See color_front for details.

color red green blue
color red green blue alpha
color_both red green blue
color_both red green blue alpha

Color of the front and back of the surface. See color_front for details.

thickness float
Boldness of the surface in pixels for drawing purposes. This is only
relevent for 1-D and 2-D simulations, and for 3-D simulations in which
surfaces are drawn with just vertices or edges and not faces. The
simulated thickness of surfaces is given with the command thick.

polygon_front char
Drawing method for the front of the surface. The character may be ‘f’, for
filling in the faces of the polygons (this is the default), ‘e’ for drawing the
edges, ‘g’ for drawing both faces and edges, or ‘v’ for drawing the
vertices.

polygon_back char
Drawing method for the back of the surface. See polygon_front for
details.

14

polygon_both char
Drawing method for the front and back of the surface. See polygon_front
for details.

max_panels char int
Maximum number of panels of shape char that will be defined for this
surface. The shape may be ‘r’ for a rectangle, ‘t’ for a triangle, or ‘s’ for a
sphere. The surface can include panels with different shapes.

panel char float … float
Defines a new panel for the surface, where the panel has shape char. The
shape may be ‘r’ for a rectangle, ‘t’ for a triangle, ‘s’ for a sphere, ‘c’ for
cylinder, or ‘h’ for hemisphere. Following the shape character are
numbers for the panel position, where these depend on the shape.

For ‘r’, enter the axis number that the rectangle is perpendicular to,
preceded by a ‘+’ if the panel front faces the positive axis and a ‘-’ if it
faces the negative axis (these signs must be entered); then enter the
coordinates of a corner point; then enter the dimensions of the rectangle in
sequential order of the axes, omitting the one that it is perpendicuar to.
These dimensions are better called displacements because they are added
to the corner that is entered, so they may be positive or negative. For
example, for a square in a 3-D system that is perpendicular to the y-axis,
has sides of length 10 and is centered about the origin, enter: “panel r +1
-5 0 -5 10 10”. This same square could be entered as “panel r +1 5 0 5
-10 -10” , or with other descriptions. A rectangle is always perpendicular
to an axis.

For ‘t’, enter the coordinates of the corners of the triangle. This is one
number for 1-D; 4 for 2-D, and 9 for 3-D. For 1-D, the front of the
triangle always faces the positive axis; rectangles are completely
equivalent and more versatile. For 2-D, triangles are really lines and the
front side of the line is the side on the right when traveling in sequential
order of the points that are entered. For 3-D, the triangle front is
determined by the winding direction of the corners: if one is facing the
front, the points wind counterclockwise. Unlike rectangles, triangles do
not have to be perpendicular to axes.

For ‘s’, enter the coordinates of the sphere center followed by the sphere
radius and some drawing information. For 1-D, the center coordinate is a
single number and the radius is entered next. For 2-D, the center
coordinates are 2 numbers and then enter the radius followed by the
number of sides on the polygon that should be drawn to represent the
circle. For 3-D, the center coordinates are 3 numbers and then enter the
radius, followed by the number of slices (longitude lines) and stacks
(latitude lines) that are used for drawing the sphere. In the 2-D and 3-D

15

cases, the drawing entries are used only for drawing; the circle or sphere
functions as an accurate smooth shape. For all dimensions, enter a
positive radius to have the front of the surface on the outside and a
negative radius for it to be on the inside.

For ‘c’, enter the coordinates of the cylinder-axis start point and the
cylinder-axis end point, then the radius, and then drawing information if
appropriate. Cylinders are not permitted in 1-D. In 2-D, two numbers
give the start point and two give the end point, followed by the radius. No
drawing information is needed. In 3-D, enter three numbers for the start
point, three for the end point, the radius, and then the number of slices and
the number of stacks.

For ‘h’, enter the coordinates of the hemisphere center, the radius, and
then the vector that points straight out of the hemisphere. Hemispheres
are not permitted in 1-D. In 2-D, the center coordinates are 2 numbers, the
radius is 1 number, the outward vector is 2 numbers, and finally enter the
number of slices. For 3-D, the center is 3 numbers, the radius is 1 number,
the outward vector is 3 numbers, and then enter 2 numbers for the
numbers of slices and stacks. The outward pointing vector does not need
to be normalized to unit length.

end_surface
End of a block of surface definitions. Surface statements are no longer
recognized but other simulation statements are.

2.4 Runtime commands

Commands are stored in a queue, which is checked and executed just before the
simulation starts, during the simulation, and just after it ends. All commands are declared
in the configuration file using one of the forms shown above, where the final string is the
actual command text. In some cases, the command text allows additional commands to
be entered as well, allowing conditional expressions. Following is a list of possible
command strings.

The command queue was changed slightly for version 1.55. In the new version,
commands of type ‘b’, ‘a’, ‘@’, and ‘i’ are unchanged and run at the requested times.
However commands of type ‘e’ and ‘n’ now run at exactly every iteration and every n’th
iteration respectively, without round-off error.

Simulation control commands

stop
Stop the simulation.

pause

16

This puts the simulation in pause mode. If opengl graphics are used,
continuation occurs when the user presses the spacebar. When graphics
are not used, the user is told to press enter.

keypress char
Send a signal to the graphics manipulation component of the program to
execute the behavior that would occur when a key is pressed. For the
arrows, and shift-arrows, the character should be r for right, l for left, u for
up, d for down, and the respective upper case characters for the shift-
arrows.

File manipulation commands

overwrite filename cmd
Erase the output file called filename and then run command cmd.

incrementfile filename cmd
A new output file is created based upon the filename. The first time this is
called the filename is appended with a “_001”, which is then incremented
with subsequent calls to “_002”, and so on. These numbers precede any
suffix on the filename.

Conditional commands

ifno name cmd
Run command cmd if no molecule of type name remains.

ifless name num cmd
Run command cmd if there are less than num molecules of type name
remaining.

ifmore name num cmd
Run command cmd if there are more than num molecules of type name.

System manipulation commands

pointsource name num pos0 pos1 … posdim
Create num new molecules of type name and at location pos.

volumesource name num pos0,low pos0,high pos1,low pos1,high … posdim,high

Create num new molecules of type name and within the location bounded
by poslow and poshigh.

killmol name
Kill all molecules of type name.

17

killmolinsphere name surface
Kill all molecules of type name that are in any sphere that is a panel of
surface surface. If name is “all” then every molecule type is killed. If
surface is “all” then every surface is scanned.

equilmol name1 name2 prob
Equilibrate these molecules. All molecules of type name1 and name2 will
be randomly replaced with one of the two types, where type name2 has
probability prob.

replacexyzmol name pos0 pos1 … posdim–1
If there is a non-diffusing molecule at exactly position pos, it is replaced
with one of type name. This command stops after one molecule is found.

replacevolmol name1 name2 frac pos0,low pos0,high pos1,low pos1,high … posdim–1,high
Fraction frac molecules of type name1 in the volume bounded by poslow,
poshigh are replaced with ones of type name2.

modulatemol name1 name2 freq shift
Modulates molecules of types name1 and name2, just like equilmol, but
with a variable probability. Every time this command executes, any of the
two types of molecules in the system are replaced with a molecule of type
name1 with probability cos(freq*t+shift), where t is the simulation time,
and otherwise with a molecule of type name2.

react1 name rxn
All molecules of type name are instantly reacted, resulting in the products
and product placements given by the unimolecular reaction named rxn.
Note that name does not have to be the normal reactant for reaction rxn.

setrateint rxn rate
Sets the internal reaction rate of the reaction named rxn to rate. See the
description above for rate_internal for the meanings of rate for the
different reaction orders.

excludebox xlo xhi
excludebox xlo xhi ylo yhi
excludebox xlo xhi ylo yhi zlo zhi

This keeps all molecules from entering a rectanguloid box within the
system volume. Use the first form for one dimension, the second for two
dimensions, and the third for three dimensions. Molecules that start
within the box can stay there, but any molecule that tries to diffuse into the
box is returned to its location at the previous time step. This command
needs to be run at every time step to work properly.

excludesphere x rad

18

excludesphere x y rad
excludesphere x y z rad

This keeps all molecules from entering a sphere within the system volume.
Use the first form for one dimension, the second for two dimensions, and
the third for three dimensions; the coordinates given are the sphere center
and rad is the sphere radius. Molecules that start within the sphere can
stay there, but any molecule that tries to diffuse into the sphere is returned
to its location at the previous time step. This command needs to be run at
every time step to work properly.

includeecoli
An E. coli shape is defined as a cylinder with hemispherical endcaps,
where the long axis of the bacterium extends the length of the x-axis
within the system walls and the radius of both the cylinder and the
endcaps is half the spacing between the walls that bound the y-axis. This
command moves any molecule that diffuses out of the E. coli shape back
to its location at the previous time step, or to the nearest surface of the E.
coli if it was outside at the previous time step as well. This command does
not need to be run at every time step to work properly. This only works
with a 3 dimensional system.

System observation commands

molcount filename
Each time this command is executed, one line of display is printed to the
listed file, giving the time and the number of molecules for each molecular
species. The ordering used is the same as was given in the names
command.

listmols filename
This prints out the identity and location of every molecule in the system to
the listed file name, using a separate line of text for each molecule.

listmols2 filename
This is very similar to listmols but has a slightly different output format.
Each line of text is preceded by the “time counter”, which is an integer
that starts at 1 and is incremented each time the routine is called. Also, the
names of molecules are not printed, but instead the identity numbers are
printed.

listmols3 name filename
This is identical to listmols2 except that it only prints information about
molecules of type name.

molpos name filename

19

This prints out the time and then the positions of all molecules of type
name on a single line of text, to the listed filename.

molmoments name filename
This prints out the positional moments of the molecule type given to the
listed file name. All the moments are printed on a single line of text; they
are the number of molecules, the mean position vector (dim values), and
the variances on each axis and combination of axes (dim2 values).

savesim filename
This writes the complete state of the current system to the listed file name,
in a format that can be loaded in later as a configuration file. Note that
minor file editing is often desirable before simulating a file saved in this
manner. In particular, the saved file will declare its own name as an
output file name, which will erase the configuration file.

meansqrdisp name filename
This function is used to measure mean square displacements (diffusion
rates) of molecules of type name, printing the results to filename. When it
is first invoked, it records the positions of all molecules of type name.
Then, and every subsequent time it is called, it compares the current
positions of all molecules that still exist to the old ones, calculates the
average squared displacement, and prints the time and that number to a
single line in the output file.

2.5 Sample configuration file

The following sample file executes a Lotka-Voltera reaction scheme, using
parameters that are essentially the same as those used by Gillespie in his classic paper (J.
Phys. Chem. 81:2340-2361, 1977). Using a vaguely ecological concept, R stands for
rabbit and F stands for fox. The reactions are

R → 2 R
R + F → F
F → nothing

The simulation is run in three dimensions with periodic boundary conditions.

Simulation file for Lotka-Voltera reaction

graphics opengl
graphic_iter 5
accuracy 5
rand_seed 5

dim 3

20

names R F
max_mol 20000
molperbox 1

difc R 100
difc F 100
color R 1 0 0
color F 0 1 0
display_size R 2
display_size F 3

time_start 0
time_stop 100
time_step 0.001

low_wall 0 -100 p
high_wall 0 100 p
low_wall 1 -100 p
high_wall 1 100 p
low_wall 2 -10 p
high_wall 2 10 p
mol 1000 R u u u
mol 1000 F u u u

cmd b pause
cmd e ifno R stop
cmd e ifno F stop

start_reaction
order 1
max_rxn 2
reactant R Rmultiply # R -> 2R
rate Rmultiply 10
product Rmultiply R + R
reactant F Fdie # F -> 0
rate Fdie 10
end_reaction

start_reaction
order 2
max_rxn 1
reactant R + F Feat # R+F -> 2F
rate Feat 8000
product Feat F + F
end_reaction

end_file

3. Graphics

3.1 Graphics manipulations

21

The output graphics window displays the simulation volume with individual
molecules. Essentially no viewing manipulations are possible with one or two
dimensional simulations, although several are available with three dimensional ones. The
display can be manipulated with keyboard input:

Key press dimensions function
space 1,2,3 toggle pause mode between on and off
Q 1,2,3 quit
T 1,2,3 save image as TIFF file
0 1,2,3 reset view to default
arrows 3 rotate object
shift + arrows 1,2,3 pan object
= 1,2,3 zoom in
- 1,2,3 zoom out
x,y,z 3 rotate counterclockwise about object axis
X,Y,Z 3 rotate clockwise about object axis

These are typically entered with actual key presses during the simulation run,
although it is also possible to add them to the run-time command interpreter with the
command keypress.

3.2 Saving images and movies

Assuming Smoldyn has been compiled with both the OpenGL library (needed for
graphics) and with Sam Leffler’s libtiff library, it is possible to save TIFF images. This
can be done by pressing ‘T’ during a simulation to save a single snapshot. Alternatively,
the configuration file statements tiff_name, tiff_iter, tiff_min, and tiff_max can be
used to save a sequence of images that can then be compiled into a movie. Compiling is
quite easy with Apple’s QuickTime Pro, although there are probably other methods as
well. Note that the image that is saved is a direct copy of the current graphics window,
including window sizing, image rotation, and all other changes made by the user. Also,
the saved TIFF won’t be current if the graphics window wasn’t updated.

4. Algorithm details

4.1 Binding and unbinding radii

For every bimolecular reaction, Smoldyn has to calculate the correct binding radius
from the reaction rate that is given in the configuration file. Also, for every reaction that
leads to multiple products, Smoldyn has to determine the correct unbinding radius, using
whatever product parameter is supplied, if any. While these binding and unbinding radii
are well defined microscopic parameters (at least within the context of the analytical
model system that is simulated), the meanings of the experimental rate constants, as well
as those given in the configuration file, are not nearly as well defined. Instead, those rate
constants depend on the conditions under which they were measured. Smoldyn accounts

22

for this by attempting to guess the experimental conditions, using a process described
here. If Smoldyn’s guess is correct, the simulated reaction rates should exactly match the
experimental rates (not including edge effects, which are typically negligible unless one
reactant is fixed at or near an edge).

The product parameters are:

Use these if reversible reactions were measured at equilibrium
p probability of geminate reaction (φ).
x maximum probability of geminate reaction (φmax).
r unbinding radius relative to binding radius (σu/σb).
b fixed length unbinding radius (σu).

Use these if reversible reactions were measured with all product removed as it was
formed

q probability of geminate reaction (φ).
y maximum probability of geminate reaction (φmax).
s unbinding radius relative to binding radius (σu/σb).
o fixed offset of products, rotationally randomized (σu).
f fixed offset of products, not rotationally randomized (σu).
i reaction is declared irreversible (σu=0).

In all cases, Smoldyn assumes that rate constants were measured using an
effectively infinite amount of reactants that were started well mixed and that then were
allowed to react until either an equilibrium was reached for reversible reactions, or a
steady-state reaction rate was reached for irreversible reactions. Only in one of these
cases is mass action kinetics correct and is the rate constant actually constant. The
precise experimental assumptions are clarified with the following examples.

1. A+B→C

The rate constant is assumed to have been measured at steady state, starting with a well-
mixed system of A and B. No product parameter is required. At steady-state, the
simulation matches mass action kinetics.

2. X→A+B

There is no bimolecular reaction, so no binding radius is calculated. The default
unbinding radius is 0, although it is possible to define a different one. If the product
parameter is p, q, r, or s, an error is returned due to the lack of a binding radius. If it is
not given or is i, x, or y, the unbinding radius is set to 0. If it is b, f, or o, the requested
separation is used. At steady-state, the simulation matches mass action kinetics.

3. A+B↔C

23

If the reversible parameter is p, x, b, or r, the forward rate constant is assumed to have
been measured using just this system of reactions after the system had reached
equilibrium. The product parameter is used to yield the correct probability of geminate
recombination if possible, or the desired unbinding radius. In this case, the simulation
matches mass action kinetics at equilibrium. If the product parameter is q, y, s, o, f, or i,
then it is assumed that the forward rate constant was measured at steady-state and with all
C removed as it was formed, thus preventing any geminate reactions. The unbinding
radius is set as requested, using the binding radius if needed. In this case, the simulated
forward reaction rate is higher than requested due to geminate rebindings.

4. A+B↔C→Y

The second reaction is ignored for determining parameters for A+B. Instead, the first
reaction is considered as though the rates were determined experimentally using just the
system given in example 3. If the product parameter is p, x, r, or b, the simulated reaction
rate for the forward reaction A+B→C will be lower than the requested rate because there
are fewer geminate reactions than there would be with the equilibrium system.
Alternatively, it will be higher than the requested rate if the product parameter is q, y, s,
o, f, or i, because there are some geminate reactions.

5. X→A+B→C

The binding radius for the second reaction is treated as in example 1, without
consideration of the first reaction. The unbinding radius for the first reaction is found
using the binding radius of the second reaction. Here, product parameters p and q are
equivalent, x and y are equivalent, and r and s are equivalent. The actual reaction rate for
the second reaction, found with a simulation, will be higher than the requested value due
to geminate rebindings that occur after the dissociation of X molecules.

6. X→A+B↔C

The A+B↔C binding and unbinding radii are treated as in example 3. Another
unbinding radius is required for the first reaction, which is found as in example 5, using
the binding radius from the second reaction. Mass action kinetics are not followed.

7. X↔A+B↔C

The binding radii and unbinding radii for each bimolecular reaction are found as in
example 3, independent of the other bimolecular reaction. The simulated rates may be
different from those requested because of differing unbinding radii.

8. X→A+B→C, A+B→D

The binding radii for the two bimolecular reactions are each found as in example 1. The
unbinding radius for the first reaction cannot be determined uniquely, because the two

24

forward reactions from A+B are equivalent and are likely to have different binding radii.
Smoldyn picks the binding radius for the first forward reaction that is listed. Thus, if the
product parameter for dissociation of X is p, the requested geminate rebinding probability
will be found for the reaction A+B→C, but a different value will be found for the
reaction A+B→D.

9. C↔A+B↔C

This reaction scheme might represent two different pathways by which A and B can bind
to form an identical complex. However, Smoldyn cannot tell which reverse reaction
corresponds to which forwards reaction. Instead, for both determining the binding and
unbinding radii, it uses the first reverse reaction that is listed.

The general principle for calculating binding radii is that Smoldyn first looks to see
if a reaction is directly reversible (i.e. as in example 3, without any consideration of
reaction network loops or other possible causes of geminate reactions). If it is and if the
reversible parameter is p, x, r, or b, then the binding radius is found under the assumption
that the rate constant was measured using just this reaction, at equilibrium. If not, or if
the reversible parameter is q, y, s, o, f, or i, then Smoldyn calculates the binding radius
with the assumption that the rate constant was measured using just that reaction at steady-
state and with all product removed as it is formed.

Unbinding radii typically require a reversible parameter (except as in example 2).
If the parameter is b, o, or f, the requested unbinding radius is used. If it is i, the
unbinding radius is set to 0. Otherwise, it can only be calculated with the knowledge of
the binding radius. If the reaction is directly reversible, the binding radius for the reverse
reaction is used. If it is not directly reversible but the products can react, as in examples
5, 6, and 8, then the binding radius for the first reaction that is listed is used.

4.2 Time steps

The simulated time in Smoldyn increases with discrete increments. However, a
major focus of program design has been to make it so that results are indistinguishable
from those that would be obtained if the simulated time increased continuously. This
goal cannot be achieved perfectly. Instead, the algorithms are written so that the
simulation approaches the Smoluchowski description of reaction-diffusion systems as the
time step is reduced towards zero, and so it maintains as much accuracy as possible for
longer time steps. This topic is discussed in detail in the research paper “Stochastic
simulation of chemical reactions with spatial resolution and single molecule detail” by
myself and Dennis Bray (Physical Biology 1:137-151, 2004). Some more discussion of
this topic is given here.

In concept, the system is observed at a fixed time, then it evolves to some new state,
then it is observed again, and so forth. A complication is that commands allow the user
to manipulate the system at fixed times; it is typically best for these manipulations to
immediately precede observations. For example, if a command states that some
collection of molecules should be removed at time t, then an observation that is also at

25

time t should show that they have been removed. This leads to the following sequence of
program operations:

--------------- time = t ---------------
manipulate system
observe system
diffuse molecules
surface interactions
reactions

0th order reactions
1st order reactions
2nd order reactions
add reaction products to system

fix any product surface interactions
------------- time = t + ∆t -------------

To follow this scheme, manipulation commands should be entered before observation
commands (the other order is possible as well if observations are desired before
manipulations). After commands are run, graphics are displayed to OpenGL if that is
enabled. The evolution over a finite time step starts by diffusing all mobile molecules.
In the process, some end up across the walls of the boundary and others are within the
binding radii of other reactants. Wall collisions are treated by reflecting molecules back
into the simulation volume (for reflective boundaries). Next, reactions are treated in a
semi-synchronous fashion. They are asynchronous in that all zeroth order reactions are
simulated first, then unimolecular reactions, and finally bimolecular reactions. With
bimolecular reactions, if a molecule is within the binding radii of two different other
molecules, then it ends up reacting with only the first one that is checked, which is
arbitrary. Reactions are synchronous in that reactants are removed from the system as
soon as they react and products are not added into the system until all reactions have been
completed. This prevents reactants from reacting twice during a time step and it prevents
products from one reaction from reacting again during the same time step. As it is
possible for reactions to produce molecules that are outside the system walls, those
products are then reflected back into the system. At this point, the system has fully
evolved by one time step. All molecules are inside the system walls and essentially no
pairs of molecules are within their binding radii (the exception is that products of a
bimolecular reaction with an unbinding radius might be initially placed within the
binding radius of another reactant).

Each of the individual routines that is executed during a time step exactly produces
the results of the Smoluchoski description, or yields kinetics that exactly match those that
were requested by the user. However, the simulation is not exact for all length time steps
because it cannot exactly account for interactions between the various phenomena. For
example, if a system was simulated that only had unimolecular reactions and the products
of those reactions did not react, then the simulation would yield exactly correct results
using any length time step. However, if the products could react, then there are
interactions between reactions and there would be errors. In this case, the error arises

26

because Smoldyn does not allow a molecule to be in existance for less than the length of
one time step.

4.3 Reactions near surfaces

Smoldyn does not treat reactions near walls or surfaces any differently from other
reactions. Moreover, if walls are reflective and a reactant happens to be less than a
binding radius from a wall, then part of the “binding volume” is inaccessible to other
potential reactants; again, there is no special treatment for this.

When molecules have excluded volume, even inert impermeable surfaces can affect
the local concentrations of chemicals. The obvious effect is that a molecule cannot be
closer to a surface than its radius, leading to a concentration of zero closer than that. In a
mixture of large and small molecules, Brownian motion tends to push the large molecules
up against surfaces while the small molecules occupy the center of the accessible volume,
creating more complex concentration effects. These effects do not occur when excluded
volume is ignored, as it is in Smoldyn, in which case surfaces do not affect local
concentrations.

While surfaces do not affect concentrations of non-reacting molecules, they do
affect reaction rates. Consider the reaction A+B→C, where A is fixed and B diffuses. If
essentially all A molecules are far from a surface, the diffusion limited reaction rate is
found by solving the diffusion equation for the radial diffusion function (RDF) with the
boundary conditions that the RDF approaches 1 for large distances and is 0 at the binding
radius (see the paper by myself and Dennis Bray titled “Stochastic simulation of chemical
reactions with spatial resolution and single molecule detail”). This leads to the
Smoluchowski rate equation

�

k = 4πDσ b

However, for an A molecule that is near a surface, an additional boundary condition is
that the gradient of the 3 dimensional RDF in a direction perpendicular to the surface is
zero at the surface. This makes the solution of the reaction rate sufficiently difficult that I
have not attempted to solve it, but the result is different from the simple result given
above. This surface effect is an issue whenever the A molecule is within several binding
radii of a surface and is especially pronounced when it is closer to the surface than its
binding radius. For cases in which the A molecule is more than one binding radius from
the surface, B molecules are going to take longer than usual to reach the region between
the A and the surface, leading to a decreased reaction rate. It is suspected that the
reaction rate decreases monotonically as the A molecule approaches and then crosses a
surface.

A special case that can be solved exactly occurs when the A molecule is exactly at
the surface, such that half of the binding volume is accessible to B molecules and half is
inaccessible. Now, the RDF inside the system volume is identical to the RDF for the case
when the A molecule is far from a surface. The logic is to assume that this is true and to
then observe that it already satisfies the additional boundary condition. Using this RDF,
the diffusive flux is half of the diffusive flux for an A molecule far from a surface,

27

because only half of the binding surface is exposed to the system. Thus, the diffusion
limited reaction rate for the situation in which a reactant is fixed exactly at a surface is

�

k = 2πDσ b

The situation changes some when simulation time steps are sufficiently long that
rms step lengths are much longer than binding radii. Now, the probability of a reaction
occuring during a time step is a function of only the binding volume. Thus, there are no
surface effects at all when an A molecule is fixed anywhere in the simulation volume that
is greater than or equal to one binding radius away from a surface. As the A molecule is
moved closer to the surface, the reaction rate decreases in direct proportion to the binding
volume that is made inaccessible to B molecules. An especially easy situation is that
when the A molecule is exactly at the surface, the reaction rate is half of its value when
the A molecule is far from a surface, which is the same as the diffusion limited result.

These results can be turned around to solve for the binding radius. If the reaction is
diffusion limited, the binding radius should double when a reactant is placed exactly at
the surface to maintain the same reaction rate. If it is activation limited, the binding
radius should increase by 21/3 to maintain the same reaction rate. As usual though, the
binding radius is more closely related to the fundamental physical properties of the
molecule than is the rate constant, so it is essential to consider the experimental
conditions that were used for measuring the rate constant.

In conclusion, reaction rates are reduced near surfaces and the effect is different for
diffusion limited and activation limited reactions. However, for both cases, and almost
certainly for all cases in between, the reaction rate is exactly half when an A molecule is
fixed at a surface, compared to when it is far from a surface. A few tests with Smoldyn
using the files reactW#, described below, suggested that these surface effects are likely to
be minimal for most situations, although it is good to be aware of their potential. The
exception is that there are large surface effects when molecules are fixed with a
significant portion of the binding volume outside the simulation volume.

4.4 Absorbing surfaces

As described in Andrews and Bray (Phys. Biol. 2004), a molecule is absorbed by an
absorbing surface if it is decided that the molecule contacted the surface during the
preceding time step. The molecule clearly contacted the surface if its postion after the
time step is on the other side of the surface than it was before the time step. It is also
possible for the molecule to stay on the same side, but to have contacted the surface
during the time step. The probability of the latter case is

�

exp − l1l2
DΔt

⎡
⎣ ⎢

⎤
⎦ ⎥

where l1 and l2 are the perpendicular distances to the surface before and after the time
step, respectively. This probability is implemented in Smoldyn to yield absorption
probabilities that are accurate for any length time step and on a planar surface.

28

As of version 1.72, absorption to walls, which is now only possible if no other
surfaces are defined, is simulated with the above equation. However, absorption to other
surfaces do not account for these indirect collisions because they were difficult to code,
increased computational load significantly, and made essentially no difference to results.

While it has not been implemented yet, a recent paper by Erban and Chapman
(Phys. Biol., submitted 2006), presents the probability of the adsorption to a surface that
is merely sticky and not totally absorbing. The stickiness coefficient is K, which is 0 for
a reflective surface and infinite for a totally absorbing surface. If it is determined that
surface contact occured during a time step, using the method just described, then the
probability of adsorption should be

�

Prob adsorption | contact() = K πΔt
2 D

This also applies to porous surfaces and will be implemented soon.

5. Tests of Smoldyn

5.1 Initial test: bounce1, bounce2, and bounce3

The simplest test is just to make sure that the Smoldyn applicaton is able to launch
and run properly, using a very simple configuration file. These tests were also useful for
getting the graphical output to work properly. Each file just shows a collection of
molecules that bounce around inside the system walls. bounce1 works in one dimension,
bounce2 in two dimensions, and bounce3 in three dimensions. When running these, note
that various keys can be used to control the graphics. These keys are: the arrows to
rotate; shift + arrows to pan; ‘=’ and ‘-’ to zoom; ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’, and ‘Z’ to rotate
about the object axes; the space bar for pause; ‘0’ to reset the view, ‘T’ to save a tiff
image, and ‘Q’ to quit. Not all of these are functional for 1 or 2 dimensions.

5.2 Diffusion rates: diffi and diffa

diffi was used to quantitatively test isotropic diffusion by letting several collections
of molecules diffuse outwards from the center of space. The moments of the molecular
distributions are saved as functions of time. The zeroth moment is the number of
molecules, which obviously ought to stay at a constant value with no fluctuations. This
was verified. The first moment is a vector quantity representing the mean position of the
set of molecules. Because of symmetry, its value should stay near the initial position (the
origin), although fluctuations are expected. These fluctuations are given with the
equation

�

mean - starting point ≈ 2Dt
n

29

D is the diffusion coefficient, t is the simulation time, and n is the number of molecules.
This equation agrees well with simulation data. The second moment is a matrix quantity
which gives the variance on each pair of axes of the distribution of positions. For
example, the variance matrix element for axes x and y is

�

vxy = 1
n

xi − x () yi − y ()
i=1

n

∑

The overbars indicate mean values for the distribution. Equations are analogous for other
pairs of axes. Because diffusion on different axes is independent, the off-diagonal
variances (vxy, vxz, and vyz) are expected to be about 0, but with some fluctuations, which
was verified. However, the diagonal variances (vxx, vyy, and vzz) are each expected to
increase as approximately

�

vxx ≈ vyy ≈ vzz ≈ 2Dt

This behavior was verified for the simulation data, using a variety of simulation time
steps and diffusion coefficients. However, the fluctuations of the variances were not
analyzed.

diffa was used to investigate anisotropic diffusion. In this case, the diffusion
equation is

�

˙ u = ∇ ⋅D∇u

u can be interpreted as either the probability density for a single molecule or as the
concentration of a macroscopic collection of molecules. D is the physical diffusion
matrix, which is the square of the matrix that is entered in the configuration file (matrix
square roots can be calculated with MatLab, Mathematica, or other methods). If D is
equal to the identity matrix times a constant, D, the equation reduces to the standard
isotropic diffusion equation. Using the file diffa, it was verified that the mean position
for anisotropic diffusion is the initial position using diffusion matrices with and without
off-diagonal elements. Using molecules that diffused in just the x-z plane, the variance
on each axis was confirmed to be nearly equal to 2Dt, using the D value for each axis. It
was also verified that the more complicated diffusion matrix yielded qualitatively
reasonable diffusion, although the variances were not checked quantitatively.

5.3 Zeroth order reaction rates: zeroreactf, zeroreactm, zeroreacts

The zeroth order reaction nothing→A proceeds with the mass action rate equation

�

n t() = n 0() + kt

30

n(0) and n(t) are the initial and time dependent numbers of A molecules and k is the
zeroth order reaction rate. Using the file zeroreactf, zeroreactm, and zeroreacts (fast,
medium, and slow) it was confirmed that the simulation results conform closely to the
theoretical result, using rates ranging from 100 molecules per simulation time step to 0.01
molecules per time step. The simulation showed fluctuations in the production rates, as
expected, but these were not analyzed.

5.4 Unimolecular reaction rates: unireact1, unireactn

unireact1 was used to check unimolecular reaction rates using a wide range of
reaction rates, and thus a wide range of reaction probabilities in each time step. Each
molecular species defined in the configuration file has a single unimolecular reaction
pathway and simply goes away when it reacts. These chemical equations are each
equivalent to simply A→nothing. The theoretical rate equation is

�

n t() = n 0()e−kt

n(t) is the number of molecules remaining after time t, n(0) is the initial number of
molecules, and k is the first order rate constant. It was confirmed that simulation data
agreed well with the equation using reaction probabilities that ranged from 0.001 to 0.632
per time step.

unireactn tests reaction probabilities using multiple reaction mechanisms. For
convenience in analysis, the reactant concentration is kept constant by having the reactant
as a reaction product. The reactions are

A→A+B kB = 2
A→A+C kC = 1
A→A+D kD = 0.5

The system is started with only A molecules, so the theoretical number of B molecules as
a function of time is

�

nB t() = kBnAt

Analogous equations hold for C and D. Simulation results closely matched these
theoretical equations when a small time step was used. However, a large time step leads
to a relatively large probability that an individual A molecule will react by one of the
three pathways during the time step. If this probability is p (the sum of the probabilities
for each of the three reaction pathways), then the probability that an A should react twice
during the same time step is proportional to p2. In the simulation, a molecule can only
react once during a time step, leading to errors whenever p2 is large, and hence when p is
large.

31

5.5 Bimolecular reactions, different reactants: react ABs, react ABm, react ABf

The reaction A+B→C is easy to analyze using mass action kinetics with the
condition that there are the same numbers of A and B molecules initially. The solution
for the number of A molecules (or B molecules) as a function of time is

�

n t() = 1
n 0()

+ kt
V

⎛

⎝
⎜

⎞

⎠
⎟
−1

reactABs, reactABm, and reactABf (slow, medium, and fast) were used to test the
simulated reaction rate. In all cases, but especially with the fast reaction rate, the
simulated rate is faster initially than the analytical rate because the simulation starts with
molecules randomly distributed whereas the analytical result assumes a steady-state
distribution. However, after enough time passes for a steady state distribution to be
formed, the simulated results agree quite well with the analytical results. These files
examine reaction rates that have ratios of mutual rms step lengths to binding radii ranging
from 0.146 (bireactABf, diffusion limited) to 2.15 (bireactABs, activation limited).

5.6 Bimolecular reactions, same reactant: reactAAs, reactAAm, and reactAAf

The reaction A+A→C was investigated as well. Using mass action kinetics, the
analytical solution for the number of A molecules as a function of time is

�

n t() = 1
n 0()

+ 2kt
V

⎛

⎝
⎜

⎞

⎠
⎟
−1

This was tested using the files reactAAs, reactAAm, and reactAAf. All files agreed well
with the analytical equation. The configuration file ratios of mutual rms step length to
binding radius ranged from 0.145 for the fast version (diffusion limited) to 1.67 for the
slow version (activation limited). As before, the simulated reaction rate was faster
initially than the analytical rate because of different initial molecule distributions.
However, the rates agreed well after the simulation distribution had time to reach a
steady-state profile.

5.7 Reactions near walls: reactW1, reactW2, reactW3, reactW4

In principle, an impermeable surface should not change the local concentration of a
reactant, although it can affect reaction rates. This was investigated using the same
system as for the A+B→C reaction shown above, except that all A molecules were fixed
near the surfaces of the simulation volume. The binding radius for all files is 0.763 and
the rms step length of the B molecules is 0.632, leading to reactions that are intermediate
between diffusion and activation limited. In the file reactW1, the A molecules are

32

positioned 5 units inside reflective walls, which is large compared to the rms step length
or binding radius. Kinetics are quite different from those described in section 4.5 because
of the correlated A molecule positions and surface effects, although an analytical
equation was not derived. Changing the distance from the walls to 1 unit in reactW2,
which is now close to the rms step length and binding radius, makes essentially no
difference in the output. In reactW4, the A molecules are placed on the walls and the
boundaries are made periodic, which again has no effect. Other tests involved increasing
or decreasing the time steps by a factor of 10 for these files, which also had no significant
effects. Thus, surface effects are minimal for reaction rates when the entire binding
volume is accessible to diffusing molecules.

In reactW3, the A molecules are placed on the walls and the boundaries are
reflective so that only half of the binding volume is accessible. The reaction rate in this
case should be exactly half of the rate for the other files, although it was consistently
found that the ratio of the rates is closer to 0.55, for a wide range of time step lengths.
The cause of this difference has not been identified.

5.8 Reversible reactions: equil

Reversible reactions involve geminate recombination issues, as discussed in section
3. The accuracy of reversible reaction rates was investigated with the configuration file
equil, in which an equilibrium is set up for the reaction A+B↔C. From standard
chemistry, the equilibrium constant is related to the ratio of product to reactant
concentrations and to the ratio of the forward to reverse rate constants,

�

K = nCV
nAnB

=
k f
kr

V is the total system volume. The configuation file equil starts with equal numbers of A
and B molecules and no C molecules. Using the above equation and this starting point,
the solution for the equilibrium number of A molecules is

�

nA =
−V + V 2 + 4KnA 0()V

2K

nA(0) is the initial number of A molecules. It was verified that the simulation result
approached this value. As usual, fluctuations were not analyzed.

5.9 Simple reaction networks: lotvolt

The file lotvolt just runs a simple Lotka-Volterra system of reactions to make sure
that the various components of Smoldyn work together. This configuration file is
identical to the one shown in section 2.5. Results were not analyzed quantitatively.

33

5.10 Surfaces: surf1, surf2, surf3

Surfaces in 1, 2, and 3 dimensions are demonstrated and tested with these three
files. They include all surface panel shapes and all surface types. These types are
reflecting, transparent, and absorbing. For the first time, version 1.72 is nearly perfect
about not letting molecules leak through surfaces that are supposed to be reflective.

6. Copyright and Citation

Nearly all of the components of Smoldyn were written by myself (Steven Andrews),
with the exceptions being a few short routines that were copied from Numerical Recipies
in C (Press, Flannery, Teukolsky, and Vetterling, Cambridge University Press, 1988),
which are acknowledged where appropriate. Also, Smoldyn requires the use of OpenGL
and libtiff libraries. The compiled version of Smoldyn, the components of the source code
that are not copyrighted by others, and this documentation are copyrighted by myself.
However, permission is granted for any non-commercial use of the program and of the
source code. The only portion of the code that may not be modified is the copyright
information. No warrenty is made for the performance or suitability of any portion of
Smoldyn.

I expect to maintain a working copy of the program indefinitely. The current
download site for Smoldyn is http://genomics.lbl.gov/~sandrews/index.html, where the
program may be obtained for free. If improvements are made to the code or bugs are
fixed, then I would appreciate a copy of the modified source code. If you find any bugs
in the code, please let me know! My e-mail address is ssandrews@lbl.gov.

If Smoldyn is used to a significant extent, it may be appropriate to cite or
acknowledge its use.

7. Acknowledgements

I started writing Smoldyn while I was a post-doc in Dennis Bray’s laboratory at the
University of Cambridge and funded by NIGMS grant GM64713. Additions were made
during my next post-docin Adam Arkin’s laboratory at the Lawrence Berkeley National
Laboratory, where I was funded by the Genomes to Life Project of the US Department of
Energy and an NSF post-doctoral fellowship in biological informatics. Suggestions and
comments from Karen Lipkow, Dennis Bray, and Adam Arkin are appreciated. Prior to
my starting Smoldyn, I attended an M-Cell workshop taught by Joel Stiles and Tom
Bartoll, where I learned many of the concepts that became incorporated in the program.

